

NOVEL 1,2,3,4-TETRAHYDROISOQUINOLINES WITH HIGH AFFINITY AND SELECTIVITY FOR THE DOPAMINE D₃ RECEPTOR

Nigel E. Austin, Kim Y. Avenell, Izzy Boyfield, Clive L. Branch, Martyn C. Coldwell, Michael S. Hadley, Phillip Jeffrey, Amanda Johns, Christopher N. Johnson, David J. Nash, Graham J. Riley, Stephen A. Smith, Rachel C. Stacey, Geoffrey Stemp,* Kevin M. Thewlis, and Antonio K. K. Vong SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK.

Received 28 September 1998; accepted 30 November 1998

Abstract: Using clearance and brain penetration studies as a screen, tetrahydroisoquinoline 3 was identified as a lead having low clearance in rats (CLb 20 ml/min/kg). Introduction of a 7-CF₃SO₂O- substituent into the tetrahydroisoquinoline, followed by replacement of the biphenylamido group of 3 by a 3-indolylpropenamido group gave 31, having high D₃ receptor affinity (pKi 8.4) and 150 fold selectivity over the D₂ receptor.

© 1999 Elsevier Science Ltd. All rights reserved.

All clinically effective antipsychotic agents share the property of dopamine D_2 and D_3 receptor antagonism. At clinical doses these drugs occupy D_3 as well as D_2 receptors and their antipsychotic effects could therefore be mediated via D_2 and/or D_3 receptors. Blockade of D_2 receptors in the striatum leads to serious extrapyramidal side-effects, which result in poor patient compliance and consequently poor control of the disease. Dopamine D_3 receptors are preferentially located in limbic brain regions, such as the nucleus accumbens, where dopamine receptor blockade has been associated with antipsychotic activity. A selective dopamine D_3 receptor antagonist therefore offers the potential for an effective antipsychotic therapy, free of the serious side-effects of currently available drugs. ¹⁻³

Recently, we described a novel series of 5-substituted-*N*-propyl-2-aminotetralins, exemplified by compounds 1 and 2, which had high affinity, pKi 8.8 (Ki 2 nM), for the dopamine D₃ receptor and over 200 fold selectivity against the D₂ receptor.^{4,5} Further studies in the rat demonstrated that these compounds, such as 1, were metabolised *via N*-depropylation and rapidly cleared (CLb 80 ml/min/kg). Using blood clearance and brain penetration studies as a screen,⁶ tetrahydroisoquinoline 3, D₃ pKi 7.6, was identified as a new lead having low clearance (CLb 20 ml/min/kg).

In this *Letter* we report some of our initial investigations into the optimisation of the D_3 affinity and selectivity of tetrahydroisoquinolines related to 3.

Compounds 3, 4 and 9 - 31 were prepared from the tetrahydroisoquinolines 5a or 5b as shown in Scheme 1.

Scheme 1.

Reagents: (i) NaBH(OAc)₃, ClCH₂CH₂Cl; (ii) (a) 1M HCl, Et₂O, (b) BBr₃, CH₂Cl₂; (iii) (CF₃SO₂O)₂O, pyridine; (iv) NH₂NH₂.H₂O, EtOH; (v) EDC, HOBT, CH₂Cl₂.

Reductive amination of 5a,b with 4-phthalimidobutyraldehyde 6 in the presence of NaBH(OAc)₃ gave the 4-phthalimidobutyltetrahydroisoquinolines 7a,b. In the case of the 7-methoxytetrahydroisoquinoline 7b, O-demethylation was accomplished by conversion to the HCl salt, followed by treatment with BBr₃ in CH₂Cl₂. Reaction of the resulting 7-hydroxy derivative 7c with trifluoromethanesulfonic anhydride in anhydrous pyridine gave the 7-trifluoromethylsulfonyloxy intermediate 7d. Treatment of 7a,d with hydrazine monohydrate in ethanol removed the phthalimido group to give the aminobutyltetrahydroisoquinolines 8a,b. Coupling of 8a,b to an appropriate acid, in the presence of EDC and HOBT in CH₂Cl₂ gave final compounds 3, 4, 9-31. All new compounds were purified by chromatography and isolated as their hydrochloride salts.

Inspection of molecular models suggested that a 7-substituted tetrahydroisoquinoline would give the best overlap with the 5-substituted-2-aminotetralins (Figure 1).

Figure 1. Overlap of a 7-Substituted Tetrahydroisoquinoline (cyan) with a 5-Substituted-2-Aminotetralin (magenta).

This rationale led to the synthesis of the 7-CF₃SO₂O- derivative 4, which had improved D₃ affinity compared to the unsubstituted compound 3.

By maintaining the $7\text{-}\text{CF}_3\text{SO}_2\text{O}$ - substituent in the tetrahydroisoquinoline ring, the effect of modifications to the biphenyl portion of the molecule was investigated (Table 1). Incorporation of *ortho*-methyl substituents (compounds 9 and 10) resulted in a reduction in D_3 affinity compared to 4, and highlighted the need for a coplanar conformation of the biphenyl moiety. Furthermore, the 3-phenyl derivative 11 was significantly lower in affinity than 4, indicating the importance of the shape of the biphenyl group for high D_3 affinity.

Table 1. Affinities (pKi) of Biaryl Derivatives at Dopamine D₃ & D₂ Receptors

Compounda	R	$\mathbf{D_3}^b$	$\mathbf{D_2}^b$
4		8.1	6.3
9	——————————————————————————————————————	7.3	6.0
10	——————————————————————————————————————	7.3	5.8
11		6.9	6.3
12	~~~~	8.6	6.7
13		8.6	6.9
14	-C-V-V-V-Me	8.7	7.0
15	→ NHMe	8.6	7.0
16	NHMe	8.7	6.9

^a All new compounds gave satisfactory analytical and/or mass spectral data.⁷

^b All values represent the mean of at least 3 experiments, each within 0.3 of the mean.

In the 4-phenyl series (compounds 12 - 16), a range of substituents at the 3' and 4'-positions which were capable of hydrogen-bonding produced an increase in D_3 affinity compared to 4. Interestingly, the 4'-acetyl derivative (compound 12) had the highest selectivity over the D_2 receptor. Replacement of the 4'-acetyl substituent by the more sterically-demanding 2-oxo-pyrrolidine or 1,3,4-oxadiazole groups (compounds 13 and 14) also gave compounds with high D_3 affinity, although their selectivities were marginally reduced. The 4'-and 3'-carboxamides 15 and 16 had similar D_3 affinities and selectivities, suggesting that these groups could be oriented so as to hydrogen-bond to the same region of the receptor.

Significantly, replacement of the biphenyl group of compound 4 by a trans-cinnamide moiety gave compound 17 which retained D_3 affinity and selectivity (Table 2). In contrast, the cis-cinnamide 18 had reduced D_3 affinity compared to the trans-isomer 17. Comparison of molecular models for the biphenyl region of compound 4 with those of the trans- and cis-cinnamides 17 and 18 suggested that the trans-cinnamide could be more easily accommodated inside the volume occupied by the biphenyl group. Introduction of small electron-withdrawing or electron-donating substituents (compounds 19 - 23) into the meta or para-positions of the trans-cinnamide was well tolerated. In particular, these modifications to the structure gave compounds 20, 22, and 23 which had 100 fold selectivity over the D_2 receptor.

Table 2. Affinities (pKi) of Cinnamide Derivatives at Dopamine D₃ & D₂ Receptors

Compound ^a	R	$\mathbf{D_3}^b$	$\mathbf{D_2}^b$
17		8.3	6.5
18		7.4	6.5
19	Me	8.4	6.6
20	NMe ₂	8.4	6.3
21	OMe	8.4	6.5
22	OMe	8.5	6.5
23	√ Me	8.4	6.4

^a All new compounds gave satisfactory analytical and/or mass spectral data.⁷

^b All values represent the mean of at least 3 experiments, each within 0.3 of the mean.

Structural comparison of the cinnamide derivatives with the biphenyl series suggested that the 2-naphthylpropenamide 24 should be prepared. The encouraging profile of this compound (D₃ pKi 8.3, selectivity 200 fold vs D₂) prompted the synthesis of a range of bicyclic arylpropenamides (Table 3).⁸ A particular concern in this series was the high cLogP (6.8) of compound 24, which resulted in an effort to produce less lipophilic compounds.

Table 3. Affinities (pKi) of Arylpropenamide Derivatives at Dopamine D₃ & D₂ Receptors

Compound ^a	R	D_3^b	$\mathbf{D_2}^b$
24		8.3	6.0
25		8.4	6.4
26		8.4	6.5
27		8.5	6.6
28	Me o	8.0	6.5
29		8.6	6.8
30		8.7	6.7
31 ⁷		8.4	6.2

^a All new compounds gave satisfactory analytical and/or mass spectral data.

Replacement of the 2-naphthyl moiety of 24 by a 2-, 3-, or 6-quinolinyl group gave compounds 25 - 27, which retained similar D₃ receptor affinity and selectivity. The *N*-methyl carbostyril derivative 28 also retained D₃ affinity, which was increased for the NH carbostyril 29. This improvement in D₃ affinity was similar to that observed for hydrogen-bonding substituents in the biphenyl series, and led to the preparation of 5-indolylpropenamide 30 (D₃ pKi 8.7). Finally, replacement of the 2-naphthyl group by 3-indolyl moiety gave 31. Compound 31 had high D₃ affinity, (pKi 8.4) and 150 fold selectivity over the D₂ receptor. Further studies in the *in vitro* functional assay⁵ showed 31 to be a potent and selective antagonist (D₃ pKb 8.9) with similar selectivity over the D₂ receptor (pKb 6.6) to that observed in the binding assay.

^b All values represent the mean of at least 3 experiments, each within 0.3 of the mean.

CONCLUSIONS

Using clearance and brain penetration studies in the rat, tetrahydroisoquinoline 3 (D_3 pKi 7.6) was identified as a new lead with improved metabolic stability compared to the *N*-propyl-2-aminotetralins such as 1. Further structural modifications led to the design of the 3-indolylpropenamide 31 with high D_3 receptor affinity and 150 fold selectivity over the D_2 receptor. Studies in the rat showed that compound 31 had a low blood clearance of 27 ml/min/kg, similar to that of the lead tetrahydroisoquinoline 3. Furthermore, compound 31 was shown to be centrally penetrating following i.v. infusion, and in additional studies in the rat had a plasma half-life of 2.5 h.

REFERENCES AND FOOTNOTES

- 1. Sokoloff, P.; Giros, B.; Martres, M-P.; Bouthenet, M-L.; Schwartz, J-C. Nature 1990, 347, 146-151.
- 2. Schwartz, J-C.; Levesque, D.; Martres, M-P.; Sokoloff, P. Clin. Neuropharmacol. 1993, 16, 295-314.
- 3. Shafer, R.A.; Levant, B. Psychopharmacology 1998, 135, 1-16.
- 4. Boyfield, I.; Coldwell, M.C.; Hadley, M.S.; Johnson, C.N.; Riley, G.J.; Scott, E.E.; Stacey, R.; Stemp, G. Bioorg. Med. Chem. Lett. 1997, 7, 1995 1998.
- 5. Compounds were evaluated in binding assays using displacement of ¹²⁵I-iodosulpride from human D₃ and D₂ receptors, expressed in CHO cells. Functional activity of the compounds was determined in vitro using microphysiometry (for details see Boyfield, I.; Brown, T.H.; Coldwell, M.C.; Cooper, D.G.; Hadley, M.S.; Hagan, J.J.; Healy, M.A.; Johns, A.J.; King, R.J.; Middlemiss, D.N.; Nash, D.J.; Riley, G.J.; Scott, E.E.; Smith, S.A. and Stemp, G. J. Med. Chem., 1996, 39, 1946 1948.
- 6. CNS penetration at steady-state was investigated in the rat. Compounds were dissolved in 2% (v/v) DMSO in 5% (w/v) dextrose aq and administered at a constant infusion rate over 12 h at a target dose rate of 0.3 mg free base/kg/h. Blood samples were removed during the latter part of the infusion to confirm steady-state blood concentrations. Blood and brain samples were analysed by LC/MS/MS. Values for blood clearance (CLb) were determined according to the relationship CLb = infusion rate/steady-state blood concentration (Css).
- 7. ¹H NMR spectra were recorded at 250 MHz in CDCl₃ as solvent. Compound 31, mpt 177-180 °C (HCl salt); Mass spectrum (EI⁺): Found 521.159986 (M⁺). C₂₅H₂₆F₃N₃O₄S requires 521.159613. ¹H (free base): δ 1.65 (m, 4H), 2.51 (m, 2H), 2.69 (t, J = 7 Hz, 2H), 2.89 (t, J = 7 Hz, 2H), 3.45 (m, 2H), 3.58 (s, 2H), 6.35 (d, J = 16 Hz, 1H), 6.36 (m, 1H), 6.90 (d, J = 16 Hz, 1H), 7.00 (dd, J = 9, 2 Hz, 1H), 7.05 7.46 (m, 5H), 7.85 (m, 2H), 9.20 (br s 1H).
- 8. Arylpropenamides 24, 25 and 31 were conveniently prepared from commercially available arylpropenoic acids; 26 and 30 were prepared from known acids. The arylpropenoic acids required for compounds 27 29 were readily prepared by Heck reaction of the appropriate aryl bromide with ethyl acrylate, under standard conditions, followed by hydrolysis of the resulting ester.